

Towards a Text Generation Template Language for Modelica
Peter Fritzson*, Pavol Privitzer+, Martin Sjölund*, Adrian Pop*

+Institute of Pathological Physiology, First Faculty of Medicine, University in Prague
*PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
pavol.privitzer@if1.cuni.cz, {petfr, marsj,adrpo}@ida.liu.se

Abstract
The uses, needs, and requirements of a text generation
template language for Modelica are discussed. A tem-
plate language may allow more concise and readable
programming of the generation of textual models, pro-
gram code, or documents, from a structured model rep-
resentation such as abstract syntax trees (AST). Appli-
cations can be found in generating simulation code in
other programming languages from models, generation
of specialized models for various applications, genera-
tion of documentation, web pages, etc. We present sev-
eral template language designs and some usage exam-
ples, both C code generation and Modelica model gen-
eration. Implementation is done in the OpenModelica
environment. Two designs are currently operational.

Keywords: template language, unparsing, pretty print-
ing, code generation, Modelica.

1 Introduction
Traditionally, models in a modeling language such as
Modelica are primarily used for simulation. However,
the modeling community needs not only tools for simu-
lation but also languages and tools to create, query,
manipulate, and compose equation-based models. Ex-
amples are parallelization of models, optimization of
models, checking and configuration of models, genera-
tion of program code, documentation and web pages
from models.

If all this functionality is added to the model com-
piler, it tends to become large and complex.

An alternative idea that already to some extent has
been explored in MetaModelica [9][21] is to add exten-
sibility features to the modeling language. For example,
a model package could contain model analysis and
translation features that therefore are not needed in the
model compiler. An example is a PDEs discretization
scheme that could be expressed in the modeling lan-
guage itself as part of a PDE package instead of being
added internally to the model compiler.

Such transformation and analysis operations typi-
cally operate on abstract syntax tree (AST) representa-
tions of the model. Therefore the model needs to be
converted to tree form by parsing before transforma-
tion, and later be converted back into text by the proc-
ess of unparsing, also called pretty printing.

The MetaModelica work is primarily focused on
mechanisms for mapping/transforming models as struc-
tured data (AST) into structured data (AST), which is
needed in advanced symbolic transformations and
compilers.

However, there is an important subclass of prob-
lems mapping structured data (AST) representations of
models into text. Unparsing is one example. Generation
of simulation code in C or some other language from a
flattened model representation is another example. Yet
another use case is model or document generation
based on text templates where only (small) parts of the
target text needs to be replaced.

We believe that providing a template language for
Modelica may fulfill a need for an easier-to-use ap-
proach to a class of applications in model transforma-
tion based on conversion of structure into text. Particu-
larly, we want to develop an operational template lan-
guage that enables to retarget OpenModelica compiler
simply by specifying a package of templates for the
new target language.

1.1 Structure of the Paper

Section 2 tries to define the notion of template lan-
guage, whereas Section 3 gives more detailed language
design requirements, uses, motivation, and design prin-
ciples. Section 4 shows an example of a very concise
template language, its uses, and lessons learned. Sec-
tion 5 presents model-view-controller separation which
has important implications for the design. Section 6
presents a small interpreted template language proto-
type.

Section 8 briefly discusses applications in code gen-
eration from the OpenModelica compiler, whereas Sec-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 193 DOI: 10.3384/ecp09430124

tion 9 presents related work, followed by conclusions
in Section 10.

2 What is a Template Language?
In this section we try to be more precise regarding what
is meant by the notion of template language.

2.1 Template Language

Definition 1. Template Language. A template lan-
guage is a language for specifying the transformation of
structured data into a textual target data representation,
by the use of a parameterized object “the template“ and
constructs for specifying the template and the passing
of actual parameters into the template.

One could generalize the notion of template lan-
guage to cover target language representations that are
not textual. However, in the following we only concern
ourselves with textual template languages.

Definition 2. Template. A template is a function from
a set of attributes/parameters to a textual data structure.

A template can also be viewed as a text string with
holes in it. The holes are filled by evaluating expres-
sions that are converted to text when evaluating the
template body. More formally, we can use the defini-
tion from [17] (slightly adapted):

A template is a function that maps a set of attributes
to a textual data structure. It can be specified via an
alternating list of text strings, ti, and expressions, ei,
that are functions of attributes ai:

F(a1, a2, ..., am) ::= t0 e0...ti ei ti+1...tn en tn+1

where ti may be the empty string and ei is restricted
computationally and syntactically to enforce strict
model-view separation, see Section 5 and [18]. The ei
are distinguished from the surrounding text strings by
bracket symbols. Some design alternatives are angle
brackets <...>, dollar sign $...$, combined <$...$>.
Evaluating a template involves traversing and concate-
nating all ti and ei expression results.

Definition 3. Textual Data Structure. A textual data
structure has text data such as strings of characters as
leaf elements. Examples of textual data are: a string, a
list (or nested list structure) of strings, an array of
strings, or a text file containing a single (large) string.
A textual data structure should efficiently be able to
convert (flattened) into a string or text file.

2.2 Unparser Specification Language

Definition 4. Unparser Specification Language. A
special case of template language which is tailored to
specifying unparsers, i.e., programs that transform an

abstract syntax (AST) program/model representation
into nicely indented program/model text.

Example: The unparser specification language in the
DICE system [3] was used to specify unparsers for the
Pascal and Ada programming languages. The unparser
specification was integrated with the abstract syntax
tree specification, to which it referred. See also the ex-
ample in Section 4.

3 Requirements and Motivation
What are our requirements on a template language for
Modelica? Why don't use an existing template lan-
guage, e.g. one of those mentioned in Section 9. In fact,
do we need a template language extension at all? Why
not just program this presumable rather “simple“ task
of converting structure into text by hand in an ordinary
programming language? In the following we briefly
discuss these issues.

• Need for a template language? Conversion of struc-
ture into text has of course been programmed many
times by hand in a multitude of programming lan-
guages. For example, the unparser and the C code
generator in the current OpenModelica compiler are
hand implemented in MetaModelica. An advantage
is usually good performance.
 However, the disadvantages include the lack of
extensibility and modeling capability mentioned in
Section 1. Another problem is that the code easily
gets cluttered by a mix of (conditional) print state-
ments and program logic. A third problem is reuse.
For example, when generating target code in similar
languages C, C#, or Java, large parts of the output is
almost the same. It would be nice to re-use the
common core of the code, instead of (as now) need
to develop three versions with slight differences

• Performance needs. There are different performance
needs depending on application. A template lan-
guage that is mainly used for generation of html
pages may need more flexibility in the order of text
generation (lazy evaluation), whereas a language
used to specify a code generation from AST needs
higher performance. Compilation should not take
too long even when you compile a hundred thou-
sand lines of models represented as a million AST
nodes.

• Intended users. Are the intended users just a few
compiler specialists, or a larger group including
modeling language users who wants easy-to-use
tool extensibility?

• Re-implement/re-use an existing template language?
Why not re-implement (or re-use) an existing tem-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 194

plate language such as for example ST [17] for
StringTemplate? This choice depends on the charac-
ter of the existing language and its implementation,
efficiency, and complexity of tool integration.

3.1 Language Design Principles

The following are language design principles [12]:

• Conceptual clarity. The language concepts are well
defined.

• Orthogonality. The language constructs are “inde-
pendent“ and can be combined without restrictions.

• Readability. Programs in the language are “easy“ to
read for most developers.

• Conciseness. The resulting program is very short.
• Expressive Power. The language has powerful pro-

gramming constructs.
• Simplicity. Few and easily understood constructs.
• Generality. Few general constructs instead of many

special purpose constructs.

Some of these principles are in conflict. Conciseness
makes it quick to write but often harder to read, not as
easy to use, sometimes less general. Expressive power
often conflicts with simplicity.

3.2 Language Embedding
or Domain Specific Language?

Should the template language be a completely new lan-
guage or should it be embedded into an existing lan-
guage as a small extension to that language?

A language that addresses a specific problem do-
main is called domain specific language (DSL). DSLs
can be categorized as internal or external [4][5].

Internal DSLs are particular ways of using a host
language in a domain-specific way. This approach is
used, e.g., for the pretty printer library in Haskell where
document layouts are described using a set of opera-
tors/functions in a language-like way [23].

External DSLs have their own custom syntax and a
separate parser is needed to process them. As an exam-
ple, StringTemplate [18][17] is an external DSL and is
provided for three different host languages: Java, C#
and Python.

If you only need the template language for simple
tasks, or tasks that do not require high performance and
tight communication with the host language, a separate
language might be the right choice. A small language
may be quicker learn and focused on a specific task.

On the other hand, embedding into the host lan-
guage makes it possible to re-use many facilities such
as: efficient compilation, inheritance and specialization
of templates, reuse of common programming con-
structs, existing development environment, etc., which

otherwise need to be (partly) re-developed. A disadvan-
tage is that the host language grows if the extension
cannot be well separated from the host language.

Proliferation of DSLs might also be a problem. For
example, consider a large application with extensive
usage of, say, twenty different DSLs that may have
incompatible and different semantics for language con-
structs with similar syntax. This might lead to a main-
tenance nightmare.

Also, what is exactly domain specific in a text tem-
plate language? The answer is probably only the han-
dling of the template text string with holes in it, switch-
ing between text mode and attribute expressions, and
implicit concatenation of elements. All the rest, e.g.,
expression evaluation, function call, function defini-
tion, control structures, etc., can be essentially the same
as in a general purpose language.

The design trade-offs in this matter are not easy and
the authors of this paper do not (yet) completely agree
on all choices. Therefore, in this paper we partly ex-
plore several design choices for a template language for
Modelica.

4 A Concise Template Language
To make the basic ideas of a template language more
concrete, we first present a very concise template lan-
guage [4] which is primarily an unparser specification
language. It has been used to specify unparsers for Pas-
cal, Ada, and Modelica. Specifications are very com-
pact. Implementation is simple and efficient.

We will use the following simple Modelica code
example to illustrate this template language:
while x<20 loop
 x := x+y*2;
end while;

This code needs the abstract syntax tree nodes for its
internal representation, specified as follows including
small template language unparsing strings.

There are two statements nodes types: ASSIGN and
WHILE. ASSIGN has two children,. lhs of type PVAR
and rhs of type EXPR.

A typical assignment looks like "variable :=

expression". The unparsing specification "@1 :=
@2" means: @ signals a command that the next charac-
ter has special interpretation. @1 means: unparse the
first child node. The following characters in the string "
:= " are just output as they are. The next command:
@2 means: unparse the second child of the ASSIGN
node.

// Statement nodes STM
ASSIGN : (lhs: PVAR;
 rhs: EXPR) : "@1 := @2";

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 195

WHILE : (condition: EXPR;
 statements: STM_LIST) : "while
@1 loop @+@n @2;@n@q@-@nend while;@n"

WHILE

LESS

VARIABLE

x

ICONST

20

ASSIGN

VARIABLE

x VARIABLE

x

PLUS

VARIABLE

y

TIMES

ICONST

2

condition statements

lhs rhs

lhs rhs

lhs rhs

lhs rhs

name value

value

name

name

name

Figure 1. Abstract syntax tree of the while loop.

The template string for while has statements as a
statement list. The semicolon ; and new line @n be-
tween @2 and @q (for quit) are emitted between each
list item. @+ and @- increase/decrease indentation level.

// Expression nodes EXPR
PLUS : (lhs:EXPR; rhs: EXPR) :
 "@1+@2" LPRIO 4;
TIMES : (lhs:EXPR; rhs: EXPR) :
 "@1*@2" LPRIO 5;
LESS : (lhs:EXPR; rhs: EXPR) :
 "@1<@2" BPRIO 3;
VARIABLE : (name: STRING) : "@1";
ICONST : (value: INTEGER): "@1";

The expression nodes also specify associativity and
priority. The latter controls whether parentheses should
be emitted. LPRIO 4 means left associative, priority 4.

4.1 Usage Experience

The full abstract syntax and unparsing specification for
Pascal is only 4 pages, and not that hard to write. The
full Ada specification is 9 pages, still quite reasonable
for a big language. Fifteen years later, such a specifica-
tion was also developed for Modelica 1.2.

This became more complicated than the one for
Ada. Also, maintenance became an issue, especially for
other people than the original specification developer.
People found the extremely concise unparsing template
strings very hard to read and debug. Eventually we de-
cided to rewrite the unparser into normal programming
language code (mix of print statements and standard
code). Not as elegant, but easier to maintain. Thus,
conciseness made specifications short to write, but too
hard to read and use/maintain. Another option could
have been to redesign the language, e.g. introducing
names instead of positions, but there was no time.

5 Model View Controller Separation
A strong design principle argued to especially relevant
for template languages is model-view-controller separa-
tion [16]. First we define these terms in the context of a
template language:

• Model – the data structure, e.g. an AST, to be con-
verted to text according to the view.

• Controller – the piece of software that controls the
application of the view to the model, e.g. a tree tra-
versal algorithm applying the templates to the tree
nodes.

• View – the mapping from attributes to text, i.e., the
actual templates in a template language.

The value of this principle is strongly argued in [16],
according to experience with the ST functional tem-
plate language [17] in the StringTemplate system. Such
separation gives more flexibility (multiple views), eas-
ier maintainability, better reuse, more ease-of-use, etc.

It is argued that the template language should be
kept simple, program computation logic should not be
too much intertwined with emitting text. If complex
computation needs to be done, it should instead be done
on the model (in our case the AST).

Our template language design has been strongly in-
fluenced by this principle.

6 A First Template Language for
Modelica

A template language maps model items to text attrib-
utes (sometimes through intermediate stages). The at-
tributes are referred to by named references in the tem-
plates. During template evaluation, the named refer-
ences are replaced by the text values of these attributes.
Thus, a template usually contains two items: a text with
named placeholders, and a mapping from attribute
names to text values, i.e. a dictionary.

In an advanced implementation (Section 7) the dic-
tionary part can be left out if the template compiler is
able to automatically map variable names to string val-
ues without an intermediary dictionary data structure.

In the rest of this section we present a first design of
a simple template language based on the language em-
bedding idea, together with some examples.

6.1 Text Output with a String Function

As previously mentioned in Section 2.1, a template is a
function from structured data, e.g. record structures or
abstract syntax trees, to a textual data structure, where
the text can be returned as a string or output to a file.

Starting with a small code example:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 196

while x < 20 loop ... end while;

This can be represented as an abstract syntax tree ac-
cording to Section 7.3 Section 6.4, from which we have
extracted two definitions:
uniontype Statement "Algorithmic stmts"
 record WHILE "While statement"
 Exp condition;
 list<Statement> statements;
 end WHILE;
end Statement;

uniontype Exp "Expressions"
 record BINARY "Binary operator"
 Exp lhs;
 Operator op;
 Exp rhs;
 end BINARY;
end Exp;

type AST = Statement; "Current AST type"

We would like to produce the following output from
the example abstract syntax tree (AST):

The expression loops while x < 20.

Below we show three variants of Modelica functions
producing this output, where the third one is based on
the Modelica template language. Here we assume that
an intermediary dictionary is not needed.

6.1.1 Function Returning a String

This function converts the AST example into a string
by concatenating string pieces and using the built-in
Modelica 3.1 String function to convert any record to
a string. A locally defined String function can be de-
fined within each record type definition (not shown
here)
function mkString
 input AST whileStm;
 output String out :=
 "The expression loops while " + String(
 whileStm.condition.lhs.name) +
 " < " + String(
 whileStm.condition.rhs.value) + ".";
end mkString;

6.1.2 Function with File Output

If we instead would like to output to a file without first
concatenating strings, it might appear as follows:
function emitString
 input AST whileStm;
 input FILE file;
algorithm
 print(file,
 "The expression loops while ");
 print(file, String(
 whileStm.condition.lhs.name));
 print(file, " < ");
 print(file,

 String(whileStm.condition.rhs.value));
 print(file, ".");
end emitString;

6.1.3 Function Based on a Template

The following function uses the Modelica template
language syntax defined in Section 6.3. The idea is to
automatically generate the string function in Section
6.1.1 or the file output function in Section 6.1.2.

The escape-code << on a single line signals the start
of the template section, and >> on a single line ends it.
Text (excluding the first and last single lines) is just
used verbatim. Pieces of text are automatically con-
catenated or output to a file. The escape-code <$ sig-
nals the beginning of some piece of Modelica code that
should be automatically converted to a string, and $>
ends it.
function templString
 input AST whileStm;
<<
The expression loops while
<$whileStm.condition.lhs.name$> <
<$whileStm.condition.rhs.value$>.
>>
end templString;

One can also let all template functions inherit common
characteristics from a common base function, e.g.:
function templString
 extends TemplateFunction;
<<
...
>>
end templString;

6.1.4 Benefits of Template Functions

The main benefit of the text template approach is that
the string conversion, concatenation, and file output
code can be generated automatically instead of hand
implemented, which increases readability and model-
view-controller separation.

Another benefit supported by some template en-
gines (e.g., StringTemplate [17]) is lazy evaluation – all
the data structure pieces need not be evaluated in the
order they are referred to in the template; instead
evaluation is automatically delayed if needed, until the
final result is output.

6.2 The Simple Template Language Dictionary

The simple template language dictionary used for
lookup in the following small examples is defined be-
low via the DictItemList constant, with a simple
mapping from key to object. The number of datatypes
that the dictionary can hold is very limited compared to
more advanced template engines. The idea is that eve-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 197

rything in the model is a Boolean, a string, a collection
of strings, or a nested dictionary (to allow recursive
datatypes). First we define the dictionary data types
needed:
uniontype Dict

 record ENABLED
 end ENABLED;

 record STRING LIST
 list<String> strings;
 end STRING LIST;

 record STRING
 String string;
 end STRING;

 record DICTIONARY
 DictItemList dict;
 end DICTIONARY;

 record DICTIONARY LIST
 list<DictItemList> dict;
 end DICTIONARY LIST;
end Dict;

record DictItem
 String key;
 Dict dict;
end DictItem;

type DictItemList = list<DictItem>;

Then we define a sample dictionary to be used in some
of our examples:
constant DictItemList sampleDict = {
 DictItem("EnableText", ENABLED()),

 DictItem("People", DICTIONARY_LIST({
 DICTIONARY({
 DictItem("Name", STRING("Adam")),
 DictItem("Fruits", STRING_LIST(
 {"Orange "})
 }),
 DICTIONARY({
 DictItem("Name", STRING("Bertil")),
 DictItem("Fruits", STRING_LIST(
 {"Apple", "Banana", "Orange "})
 })
 }),

 DictItem("WHILE", ENABLED()),

 DictItem("condition",
 DICTIONARY({
 DictItem("lhs", DICTIONARY({
 DictItem("VARIABLE", ENABLED()),
 DictItem("name",STRING("x"))
 })),
 DictItem("rhs", DICTIONARY({
 DictItem("ICONST", ENABLED()),
 DictItem("value",STRING("20"))
 }))
 }))
};

6.3 Template Syntax

Below are the constructs used in the simple template
language. Each construct contains the identifier used in
the compiled template, as well as the character se-
quence used to construct it.

Note: This is a preliminary, rather cryptic syntax
that was quick to implement by an interpreter. Below
are also some examples of more readable Modelica
syntax are shown for certain constructs.

A key is a string that does not contain any charac-
ters using $, or ", and does not start with #,!,=,^, or _. It
is used for lookup of attributes from the dictionary en-
vironment. The dictionary environment is a simple
linked environment where the current scope has the
highest priority.

In the Modelica-syntax variant, <$ $> are used to
contain Modelica code and/or attribute names.

FOR_EACH loops and RECURSION both change the
dictionary environment. If the key contains dots, they
are used for nested lookup.

Only items of the type DICTIONARY can be ac-
cessed recursively, but the last element can be of any
type (e.g. DICT1.DICT2.DICT3.key).

6.3.1 Lookup of a Key Value

If lookup(dict,key) returns a string, this becomes
the output.

Template syntax:
key

Modelica-like template syntax:
<key>

or a variant with explicit Modelica lookup syntax that
can be used inside Modelica code context:
keyValue(dict,"key")

Example template:
The expression loops while
$condition.lhs.name$ <
$condition.rhs.value$.

Modelica-like example template:
The expression loops while
<$condition.lhs.name$> <
<$condition.rhs.value$>.

Example output:
The expression loops while x < 20.

6.3.2 Checking non-empty Attribute Values

If lookup(dict,key) returns any non-empty value
(empty strings and lists are empty values), run body.
The general syntax also includes elseif and else clauses.

Template syntax::
$=key$body$/=

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 198

Modelica-like template syntax (where [] means 0 or 1
times, {} means 0 or >= 1 times):
<$if key then$>body{<$elseif$>body}
[<$else$>body] <$end if$>

Abstract syntax:
COND(cond_bodies={(key,true,body)},else_bo
dy={})

Example template:
$=WHILE$This is a while expression.$/=

Modelica-like example template:
<$if WHILE then$>This is a while
expression.<$end if$>

Example output:
This is a while expression.

6.3.3 Checking for Empty Attribute Value

Checking for empty attribute values. The opposite of
checking nonempty values.

Template syntax::
$!key$body$/!

Modelica-like template syntax (where [] means 0 or 1
times, {} means 0 or >= 1 times):
<$if not key$>
body {<$elseif$> body} [<$else$> body]

Abstract syntax:
COND(cond_bodies={(key,false,body)},else_b
ody={})

Example template:
$!ASSIGN$This is not an assignment.$/!

Modelica-like example template:
<$if not ASSIGN then$>This is not an
assignment.<$end if$>

Example output:
This is not an assignment.

6.3.4 For Each Iteration

Use lookup(dict,key) to fetch a STRING_LIST,
DICTIONARY or DICTIONARY_LIST value, then iterate
over the elements in the fetched item. Iterating over
DICTIONARY and DICTIONARY_LIST modifies the
dictionary environment (it adds the dictionary to the
top-most dictionary in use). The (optional) separator is
inserted verbatim between the result of each iteration.

In the Modelica syntax case, an ordinary array itera-
tor {} is used to collect the results of the iterations, and
the insertSep function to insert separator strings be-
tween the items.

Template syntax:
$#key[#sep]$body$/#

Modelica-like template syntax without separators:

<${$>body<$for this in <$key$>}$>

Modelica-like template syntax with separators:
<$insertSep({$>body<$ for this in
<key>}, sep="...")$>

Abstract syntax:
FOR_EACH(...)

There is an example in the next section.

6.3.5 Current Item Value in Iterations

Only valid when looping over a STRING_LIST value.
Outputs the current value item string.

Template syntax:
$this$

Modelica-like template syntax:
<$this$>

Abstract syntax:
CURRENT_VALUE(...)

Example template with nested for each (first key is
People, retrieving a dictionary list where each person
dictionary has a key Name with string value and another
key Fruits with string list value:

$#People$$Name$ has the following
fruits:\n
$#Fruits#, $$this$$/#\n
$/#

Modelica-like example template:
<${$><$Name$> has the following fruits:\n
<$insertSep($><$Fruits$><$, sep=", ")$>
<$for person in People}$>

Modelica-like example template with explicit key-
Value calls:
<${keyValue(person,"Name")$> has the
following fruits:\n
<$ insertSep(keyValue(person,"Fruits"),
sep=", ") for person in People}$>

Output:
Adam has the following fruits:
Orange
Bertil has the following fruits:
Apple, Banana, Orange

6.3.6 Recursion

Use lookup(dict,key) to fetch a DICTIONARY or
DICTIONARY LIST value. It will then use the current
scope (from FOR EACH or the global scope) to iterate
over the elements from the DICTIONARY LIST as the
new top of the dictionary environment. The current
auto-indentation depth is concatenated to the indent.

Note: the special construct for recursion on the cur-
rent template is unnecessary in the Modelica syntax
case, since you can just call the template with the same
name. Calling templates is shown in Section 6.3.8.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 199

Template syntax:
$^key[#indent]$body$/^

Modelica-like template syntax, where each subtemplate
to be called would need to be explicitly named:
<$subtemplate()$>

Abstract syntax:
RECURSION(...)

6.3.7 Increasing Indentation

Opens up a new scope and adds indent to the indenta-
tion level.

Template syntax:
$_indent$body$/_

Abstract syntax:
ADD_INDENTATION(...)

Example template, where we use * instead of space to
be more visible as indentation whitespace:
$_***$$=EnableText$\n
Listing all the people:\n
$^People#......$
$/=
$!EnableText$$Name$\n
$/!$/_

Output:
***Listing all the people:
***Adam
***......Bertil
***......

6.3.8 Calling a Pre-Compiled Template

When compiling a template, you also send the engine a
list of keys mapped to pre-compiled templates. Calling
a template opens up a new scope.

Template syntax:
$:subtemplate$:

Modelica-like template syntax:
<$subtemplate()$>

Abstract syntax:
INCLUDE(...)

Example template:
$:AddIndentationExample$$:CurrentValueExam
ple$

Modelica like example template:
<$AddIndentationExample()$>
<$CurrentValueExample()$>

Output:
 Listing all the people:
 Adam
 Bertil
 Adam has the following fruits:
Orange
Bertil has the following fruits:
Apple, Banana, Orange

6.4 Generating C Code from a While Loop

We return to the while loop example shown previously
in Section 4, to be represented as an AST:

while x<20 loop
 x := x+y*2;
end while;

The abstract syntax types can be found in Section 7.3.

6.4.1 Small Template Language Example

Templates for emitting C code from the AST of a while
loop:

$=WHILE$\n
while ($#condition$$:Exp$$/#) {
$^statements# $\n
}
$/=
$=ASSIGN$
\n$lhs.name$ = $#rhs$$:Exp$$/#;
$/=

$=BINARY$
(lhs $#op$$:op$$/# rhs)
$/=
$=ICONST$ $=PLUS$ $=TIMES$ $=LESS$
$value$ + * <
$/= $/= $/= $/=
$=VARIABLE$
$name$
$/=

7 Susan – A Compiled Template
Language for Modelica

The template language shown in Section 6 (the concise
cryptic syntax variant) was implemented as an inter-
preted external DSL that has both advantages and dis-
advantages. First the advantages:

• Strictly adheres to the model-view-controller sepa-
ration as in [16].

• The language is small, and does not perform com-
putation on the model, as advocated in [17].

• Simple to implement and modular.

There are also disadvantages:

• The non-Modelica syntax is cryptic, hard to read.
• Interpretation does not give enough performance.

As the next step we have developed an improved tem-
plate language design and implementation called
Susan, with the following main advantages:

• Presumable increased readability
• Compiled to gain maximum performance
• MVC separation is enforced in a more suitable way

in context of MetaModelica as the host language

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 200

• The language is mature enough to provide a com-
plete vehicle for target code generator specifications
in the OpenModelica compiler (OMC) environment.

• The syntax and semantics complies with the Meta-
Modelica type system for textual templates

To summarize, this is a functional, strongly typed, ex-
pression oriented template language.

7.1 MVC and Control

Susan’s design is strongly influenced by the String-
Template’s (ST) [17] language, briefly described in
Section 9.3, and below.

ST’s control logic, i.e., conditional inclusion of
template parts, is restricted to querying attributes only
for their presence/absence or true/false values. This is
designed to strictly prevent entanglement of Model and
View (MVC). It is primarily obeying the rules “the
view cannot make data type assumptions“ and “the
view cannot compare dependent data values“ [16].

Before an ST template can be rendered to text the
attribute values must be transferred to it completely. It
is then the work of the Controller to bridge the gap
from the Model to the template, e.g. extract data from a
database, call some business logic on the Model or
walk over an AST, and then transfer the proper values
as template attributes.

Susan also transfers data from the Model to the
template View, but integrates more control into the
View in terms the match construct (Section 7.9).

7.2 Strongly Typed Templates

MetaModelica extends the Modelica type system with
union types to facilitate construction of tree-like data
structures, in particular Abstract Syntax Trees (ASTs)
for efficient modeling of languages.

In our early interpreted template language design
we have been using a simple template dictionary (Sec-
tion 6.2) as an analogy to ST’s object model. While
general and simple the creation and dynamic lookup
implies a certain performance loss.

In order to increase efficiency, we need to avoid the
dictionary. As a consequence, templates should be able
to directly access MetaModelica data structures. This
lead us to strongly typed templates with read-only se-
mantics, with some more control included.

Making templates strongly typed has advantages
like generating more efficient code, and avoiding errors
that otherwise might occur in applications if only dy-
namic typing would be used.

7.3 Template Package Type Views

Templates in the Susan language are grouped in pack-
ages. Each template package can import one or more
type views, i.e., sets of AST type definitions. Each type
view uses MetaModelica syntax and resides in a sepa-
rate file. Here we will use a type view that can model
the while loop example from Section 4:
package OriginalPackageName

uniontype Statement "Algorithmic stmts"
 record ASSIGN "An assignment stmt"
 Exp lhs; Exp rhs;
 end ASSIGN;

 record WHILE "A while statement"
 Exp condition;
 list<Statement> statements;
 end WHILE;
end Statement;

uniontype Exp "Expression nodes"
 record ICONST "Integer constant value"
 Integer value;
 end ICONST;

 record VARIABLE "Variable reference"
 String name;
 end VARIABLE;

 record BINARY "Binary ops"
 Exp lhs; Operator op; Exp rhs;
 end BINARY;
end Exp;

uniontype Operator
 record PLUS end PLUS;
 record TIMES end TIMES;
 record LESS end LESS;

 end Operator;

end OriginalPackageName;

The OriginalPackageName is the name of the origi-
nal MetaModelica package where types included in the
type view are fully defined. A type view can use types
from several packages. It usually specifies a subset of
the original types defined in several packages and from
these types suitable parts can be selected. For example,
there can be additional union tags in the Statement
type, but only those two specified can be used by tem-
plates that use this view. Similarly, more record fields
can be originally defined in the ASSIGN record but only
lhs and rhs can be read inside the template package
with the view imported.

AST type view files can be shared across different
target languages as a kind of type interface to the com-
piler generated output ASTs (e.g., simulation code
ASTs). It is also an essential feature to support scenar-
ios where users are not allowed to see all original types
(e.g., a commercial Modelica compiler) but still can see

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 201

and use the intended subset to extend the code genera-
tor.

In addition to type views, templates automatically
understand all MetaModelica built-in types: String,
Boolean, Integer, Real, list, Option, tuple, and
Array types.

7.4 Template Definition

A template definition in Susan has a C-like function
signature with a name and formal typed arguments,
instead of a Modelica-like signature as in the design of
Section 6 The body is a single template expression
without explicit delimiters:
templ-name(Type1 n1, Type2 n2, ...) ::=
 template-expression

A template’s textual output is the result of the template
expression evaluated with the actual parameter values
in its scope. All parameters are input and read-only; in
general, all values bound to names are read-only inside
template expressions.

Unlike ST, which uses dynamic scoping of attrib-
utes, this language uses lexical scoping. After the sym-
bol ::=, a new lexical scope is created for template
parameters that are only accessible by their names in-
side the scope. Nested lexical scopes can also be cre-
ated by other constructs, e.g. in map expressions.

ST uses the concept of an implicitly available de-
fault attribute, named it, to decrease the verbosity in
some common expression forms. This concept has been
adapted for Susan as an implicitly available variable.

In the following sections we provide short descrip-
tions of the five kinds of Susan’s expressions:

Textual template expressions, named value refer-
ences, template calls, match and conditional expres-
sions, and map expressions.

7.5 Textual Template Expressions

A fundamental concept used for textual template ex-
pressions is a ”text with holes in it”. An example is

'Dear Mr. <name>.'

When the expression is rendered to text, the value of
the name parameter is filled into <...> angle-
bracketed marked hole and the brackets are discarded.

We have chosen single quotes, unlike ST, because
we wanted double quotes to be reserved for string con-
stants, thus

 "Dear Mrs. <nice>"

is a constant textual template expression precisely fol-
lowing Modelica string syntax without any holes, and it
respects ordinary escape characters like "\n" or "\t"
for new line and tab characters.

To support readability (or verbatimness) of tem-
plates to the maximum extent, the <<...>> delimiting
pair can be also used for longer templates with holes as
follows, where there is a rule that a new line right after
the opening delimiter and a new line right before the
closing delimiter are ignored:

<<
Hi '<name>',
today is <dayName>.
>>

There is an equivalent to <<...>> for longer constant
texts, the %X...X% verbatim string delimiting pair,
where the X can be an arbitrary character where pairs of
() [] {} are respected like

%(
\\ (Really) '<verbatim>' "text\n"
)%

or like

%*Some shining <*> is over there!*%

Everything inside the %X...X% is taken verbatim with
complete lack of escapes.

We have provided the basis for the text part of the
language, e.g. used in this complete template example:
hello(String person) ::= <<
Hello <person>!
>>

7.6 Named Value References

In the previous section, named value references were
already used in the examples. A value can be referred
by name when it is in the scope of the expression.

 Automatic to-string conversion applies for all
primitive MetaModelica types (String, Integer,
Real, Boolean) and for all generic types of primitive
types except of tuple types, i.e., list, Option and
Array. Examples of automatic to-string conversion:

templ1(Integer i, Real r, Boolean b)::=
 'Is that <i> = <r>?'

templ2(list<String> names,
 Option<Integer> optId) ::=
 'allNames<optId> = "<names>";'

templ3(String hello) ::= hello

Option typed values are output conditionally when
they hold a value (the value of SOME). List types are
output in sequence, i.e., effectively the concatenation of
the string equivalents of their elements. These to-string
conversion rules are elaborated recursively, that is, also
a value of type list<Option<Integer>> is auto-
matically to-string convertible.

For list and Array typed values a separator op-
tion can be specified right after the value name, like:

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 202

nameList(list<String> names) ::=
 'Names are: <names ", ">.'

There are more possible options for multi-valued ex-
pressions tailored for structuring the output text prop-
erly, see Section 7.11.

7.7 Template Calls

Templates can be called from other templates. Recur-
sive calling of templates is allowed, too. The syntax is:

templ-name(arg1, arg2, …, argn)

where templ-name is the name of the called template,
argi are actual parameter expressions, and n can be 0
or more. Parameters are strongly typed with automatic
to-string conversion when applicable. Usually actual
parameters are named value references or other tem-
plate expressions, but literal constants of Integer,
Real and Boolean types can also be used (it is a sort
of restriction to be able to create only non-structured
constant values). Some examples:
sayN(String msg, Integer n) ::=
 'Say "<msg>" <n> times.'

say3(String msg) ::= sayN(msg,3)

whatToSay(String word) ::= <<
What to say?
<say3('Susan is <word>!')>
>>

7.8 Iterative Map Template Expressions

The map template expression is used to iterate over
lists (or a scalar). It is conceptually similar to map
functions heavily used in functional languages instead
of imperative constructs like for-loops.

There are several possible design choices of syntax
for this construct. The current choice (inspired by ST)
is to use the colon (:) as a map operator:
value-expr of elem-pattern : templ-expr

However, : can be a bit cryptic and hard to see embed-
ded in code. Other possibilities could be:

map(templ-expr, value-expr, elem-pattern)

or the Modelica iterative expression (without pattern):
templ-expr(x) for x in value-expr

The above means: "Map element(s) of the value-
expr that matches elem-pattern using templ-
expr; Concatenate results if they are multiple."

The redesigned part compared to ST is the of key-
word that is a shortcut of meaning close to ”consists of
element(s) like”. The colon ":" then creates a new
nested scope for template invocation in an element-

wise manner. If the value-expr is a scalar value it is
treated as a single element.

Value-expr is usually a named value reference,
but can be an external or intrinsic function call (see
Section Error! Reference source not found.).

Elem-pattern is most often a single name value
binding or a tuple pattern matching expression, but the
same syntax and semantics applies here as for the pat-
tern matching case rules in match-expressions. This, it
can work as a filter for elements to be mapped, see the
next section for more about patterns.

Templ-expr can be any valid template expression.
For example,
gentlemen(list<String> names) ::= <<
Hello<names of name: ', Mr. <name>'>!
>>

pairList(
 list<tuple<String,Integer>> pairs
) ::= <<
Pairs:<pairs of (s,i):'(<i>,<s>)'", ">.
>>

where name binds each element value of names list to
be used in the provided textual template after the ":"
and the pairList template binds the two values of the
pairs input parameter to map them with the textual
template. The ", " is the optional separator string that
is used as a delimiter when concatenating the mapping
results.

Map expressions can be used also for scalar typed
values, most useful for tuple types, like
firstSI(tuple<String,Integer> pair) ::=
 pair of (s,_) : s

The implicit variable it is always implied after the ":",
semantically as the "of ..." clause is always rewrit-
ten to "of it as elem-pattern". The "of ..."
clause is then optional with the meaning "of it".
Combining this with implicit referencing of it when
omitting the parameter on a single parameter template
call, the intention of the map expression is most suc-
cinct, for example:
intDecl(String varName) ::=
 'int <varName>;'

intDecls(list<String> varNames) ::= <<
/* integer local variables */
<varNames : intDef() \n>
>>

However, when the mapping template has more pa-
rameters, all of them must be explicit; while the im-
plicit value can still be referred by the name 'it'.

And again, we have specified an optional separator
to new line in the form of unquoted escaped string \n.
There are more options that are useful in various for-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 203

matting scenarios, see Section 7.11 for their special
syntax and semantics.

7.9 Match-Expressions

For example, consider the union type Statement from
the type definition in Section 7.3. To read record values
for an input value of the type in MetaModelica we
might use a match-expression with positional pattern
matching case rules like these (only fragments):
function statement
 input Statement inStatement;
...
match inStatement
 local
 Exp lhs, rhs;
 list<Statement> stmts;
case ASSIGN(lhs,rhs)
//lhs and rhs bound to respective values
 then ...;
case WHILE(stmts) equation
//stmts has value of statements here
...

Templates are supposed only to have read access to
data structure (e.g. AST) attributes, making the usual
local variable definitions unnecessary

The match-expression in the Susan language has the
syntax:
[match value-expr]opt
 case pattern-expr then template-expr
 case pattern-expr2 then template-expr2
 ...

Value-expr is usually a named value reference, but
can also be an external or intrinsic function call.

The match... clause is optional, assumed to have
the form match it when omitted. Each case opens a
scope after then, with the record field names of the
matched record node visible, e.g. lhs and rhs in the
ASSIGN node. The statement function as a template:
statement(Statement stmt) ::=
 match stmt
 case ASSIGN then

//lhs and rhs visible in the immediate scope
 …
 case w as WHILE then

 //w.statements visible while w not hidden
...

7.10 Conditional Expressions

Conditional expressions (or if-expressions) can be con-
sidered as syntactic variants of match-expressions. The
general syntax is:
if cond-expr then template-expr
[else template-expr2]opt

where if cond-expr can be only have two forms:
if [not]opt value-expr …

if value-expr is [not]opt pattern-expr …

The first form is intended to query values for their zero-
like values, enumerated by type:
Boolean false/true
Integer and Real 0/non-0,
String, list and Array empty/non-empty
Option NONE/SOME.

The second form uses pattern matching and is, for the
case without not, semantically equivalent to:
match value-expr
 case pattern-expr then template-expr
 case _ /*the rest*/then template-expr2

For the case with not, the expressions after then are
switched (unlike the patterns).

For all forms, when the else branch is not specified
it is assumed to be the empty string.

7.11 Automatic Indentation and Options

Well indented documents and code are much easier to
read than non-indented. Indentation levels are auto-
matically and recursively tracked. For example,
lines2(list<String> lines) ::= <<
 <lines \n>
>>

lines4(list<String> lines) ::= <<
 <lines2(lines)>
>>

Giving a list of strings to the lines2 template, all the
strings are concatenated using new line as delimiter and
indented by 2 spaces. Giving the same list to lines4
template, the indentation becomes 4 spaces.

There is a set of (template) expression options that
can be specified with following syntax:
<templ-expr sep; opt1=val1; opt2; ...>

We have already used the separator option in its short
form. A separator option is applicable for all multi-
result expressions (e.g., map expressions). It has also a
named option equivalent (a fragment):
<lines; separator=\n>

Expression options can be specified only in the direct
lexical context of <...> or (…). The latter is in-
tended for expressions that occur in the top-most or a
nested lexical context (e.g., after the then keyword),
for example (fragments),
... ::= (lines \n)
... then (exps : exp(); separator=";\n")

In the above examples, the indentation is also applied
after any new line embedded in the strings. Sometimes
such behavior is not desirable.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 204

There are four indentation controlling options: an-
chor, absIndent, relIndent and indent. They set integer
values defaulting to 0 when unspecified. While active,
their semantics says: ”apply my behavior when output-
ting the first non-space character after a new line”. Spe-
cifically, anchor means ”indent relative to where I
started“, absIndent means ”indent absolutely“, relIn-
dent means ”indent relative to actual indent“ and indent
means ”break the rule, put my indent immediately and
behave like relIndent”.

There are even more options, in addition to separa-
tor , where the most notable are wrap and align.

Combining indentation controlling options with
wrapping/aligning options, most formatting scenarios
can be addressed.

7.12 The While Example Using Susan

We have now prepared the ground for the complete
while-loop example. Given these templates
statement(Statement stmt) ::=
 match stmt
 case ASSIGN then <<
<exp(lhs)> = <exp(rhs)>;
 >>
 case WHILE then <<
while(<exp(condition)>) {
 <statements : statement() \n>
}
 >>

exp(Exp e1) ::=
 match e1
 case ICONST then value
 case VARIABLE then name
 case BINARY then
 '(<exp(lhs)> <oper(op)> <exp(rhs)>)'

oper(Operator) ::=
 case PLUS then "+"
 case TIMES then "*"
 case LESS then "<"

The oper() template uses the short form of the match.
Being fed this ASTvalue of type Statement:

WHILE(
 BINARY(VARIABLE("x"),LESS(),ICONST(20)),
{ASSIGN(VARIABLE("x"),
 BINARY(VARIABLE("x"),
 PLUS(), BINARY(VARIABLE("y"),
 TIMES(),ICONST(2))))})

the statement() template will generate this text

while((x < 20)) {
 x = (x + (y * 2));
}

7.13 The Susan Compiler

The Susan compiler translates source code in the Susan
language into the MetaModelica language. The first

prototype of the compiler was fully implemented in
MetaModelica. Then, its own code generator was re-
implemented using the Susan language.

8 Applications in Code Generation
The current code generation in OpenModelica 1.4.5 is
hand implemented and transforms the DAELow AST
into a list of strings which later is concatenated into the
generated code. The only target language is C.

The new template-based code generation brings
several advantages:

• Separation of concerns – developing a new code ge-
nerator is much simpler.

• New target languages (e.g., generating Java code)
can be added more easily to the code generator.

• Also end-users (modelers) can develop code genera-
tors, specified by template-based models, that can
be dynamically linked into the compiler.

Figure 2. Usage of template-based code generators for
producing target code in different languages.

9 Related Work
Template engines and languages can be used to gener-
ate code, documentation or web pages. Most of them
claim to use a Model-View-Controller concept (MVC),

DAELow

SimCode

TemplateEngine

Generated Code

Language1

Language2

LanguageN

Runtime Language1

Runtime Language2

Runtime LanguageN

Linking

Executable

data structures for representing
solved equation code

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 205

even though many violate some of the MVC principles.
Many tools are based on Java and thus need to be fed
XML data or Java classes.

9.1 Ctemplate from Google

Ctemplate [11] is a C++-based template engine that is
less complex than most of the Java-based alternatives.
The input is a basic dictionary structure. An example of
a ctemplate template:

Hello {{NAME}},
You have just won ${{VALUE}} !
{{#IN_CA}}${{TAXED_VALUE}} after taxes.{{/
IN_CA}}

The code to use this template is rather complex [22].

9.2 Apache Velocity

Velocity [2] is a Java-based tool that generates output
using templates. It is mainly used to serve webpages,
SQL and PostScript but can also be used for code gen-
eration].

The data consists of Java classes that are fed to the
engine. Velocity applies the classes to the template us-
ing directives like if-else, foreach (for iterable classes
like lists) and can set/get its own variables inside the
template. An example Velocity template:
class Structure [
#foreach($var in $list)
 public $var.type.name $var.name ;
#end
}

9.3 StringTemplate

StringTemplate [18] with the ST language [17] is a
template engine tightly integrated with ANTLR [1],
including language bindings for Java, C++, and Python.
It has been designed [16] to strictly enforce the MVC
concept, and is mostly used for generation of web
pages.

According to the main author, Terrence Parr [17]
only four basic template constructs are needed:

• Attribute reference, $name$ or <name>.
• Conditional template inclusion based on pres-

ence/absence of an attribute, $if(flag)$text$endif$.
• Recursive template references.
• Template application to a multi-valued attribute

(e.g. names) similar to lambda functions and LISPs
map operator, $names: templToApply()$.

The template language, called ST, is actually a func-
tional language. A template example follows:

("Hello, $name$\n" +
 "While you were gone $names;
 separator=\", \"$

 called you.",
 DefaultTemplateLexer.class);

Use of the template:
import org.antlr.stringtemplate.*;
import org.antlr.stringtemplate.language.*;

class sttest {
public static void main (String [] args) {
 StringTemplate hello= new StringTemplate
 ("Hello, $name$\n" +
 "While you were gone $names;
 separator=\", \"$
 called you.",
 DefaultTemplateLexer.class);
 hello.setAttribute("name","General");
 String [] names = {"Alpha", "Bravo",
 "Charlie" };
 hello.setAttribute("names", names);
 System.out.println(hello.toString());
} }

Output:

Hello, General
While you were gone Alpha, Bravo, Charlie
called you.

9.4 Structured Representation Approaches

Invasive software composition [3] is somewhat related
to template languages. Programs are decorated with
hooks that can be replaced during composition. Opera-
tions are typically on abstract syntax instead of strings.

10 Conclusions
The uses, needs, and requirements of text generation
template language for Modelica have been discussed.

Several template language designs and some usage
examples and experience have been presented, both C
code generation and Modelica model generation. There
are difficult tradeoffs between different language de-
sign options regarding properties like generality, con-
ciseness, consistency, efficiency, etc.

Three Modelica-related designs have been created.
The first presented design is embedded in MetaMode-
lica has not yet been implemented due to lack of re-
sources. The second is a simple interpreted template
language (as an external DSL) which was implemented
and tried early on. The third (Susan) is a recently im-
plemented compiled template language. It is efficient
since it is compiled to MetaModelica. The language has
several nice features and has already been used for its
compilation to MetaModelica. However, some design
remains and there is still discussion among the authors
regarding the right syntax and semantics in some cases.
The language looks very promising as a powerful tool
for specifying code generation and similar tasks.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 206

10.1 Future Work

The next mile-stone is to re-implement the code gen-
erator of the OpenModelica compiler using the Susan
language, for at least two target languages (C/C++, C#
and perhaps Java). This will further refine the design
and implementation. Moreover, good tooling is impor-
tant also for template languages. As a start, keyword
coloring will soon be available in the OpenModelica
MDT (Modelica Development Tooling) environment.

11 Acknowledgements
This work has been supported by Vinnova in the
ITEA2 OPENPROD project, by the Swedish Research
Council (VR), by the Czech National Research Pro-
gramme, project No.2C06031, "e-Golem", and by
Creative Connections s.r.o., Czech Republic. The Open
Source Modelica Consortium supports the OpenMode-
lica work. Peter Aronsson from MathCore Engineering
AB gave useful feedback during the design.

References
[1] ANTLR. http://www.antlr.org. Access Nov 2007.

[2] Apache Software Foundation. Velocity Users
Guide, 2008.: http://velocity.apache.org/engine/
releases/velocity-1.6.1/user-guide.html. Jan 2009.

[3] Uwe Assmann. Invasive Software Composition.
ISBN 3540443851, 9783540443858, 334 pages.
Springer Verlag, 2003.

[4] Martin Fowler: Domain Specific Language
http://www.martinfowler.com/bliki/ DomainSpeci
ficLanguage.html.

[5] Martin Fowler. Domain Specific Languages
http://martinfowler.com/dslwip/

[6] Peter Fritzson. Towards a Distributed Program-
ming Environment based on Incremental Compi-
lation. PhD thesis no 109, Linköping University,
April 13, 1984.

[7] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Environ-
ment. Simulation News Europe, 44/45, Dec 2005.
http://www.openmodelica.org

[8] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[9] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proc. of the 4th International Modelica Confer-
ence, Hamburg, Germany, March 7-8, 2005.

[10] Peter Fritzson, Adrian Pop, Kristoffer Norling,
and Mikael Blom. Comment- and Indentation
Preserving Refactoring and Unparsing for Mode-
lica. In Proc. 6th Int. Modelica Conf. (Mode-
lica'2008), Bielefeld, Germany, March.3-4, 2008.

[11] Google. ctemplate, 2008. http://code.google.com
/p/google-ctemplate/. Accessed 2009.

[12] Kenneth C. Louden. Programming Languages,
Principles and Practice. ISBN 0-534-95341-7,
Thomson Brooks/Cole, 2003.

[13] Modelica Association. The Modelica Language
Specification Version 3.0, September 2007.
http://www.modelica.org.

[14] Martin Mikelsons. Prettyprinting in an interactive
programming environment. In Proc. of ACM
SIGPLAN SIGOA symposium on Text manipula-
tion. Portland, Oregon, 1981.

[15] Eclipse website. http://www.eclipse.org. Refer-
enced Nov 2007.

[16] Terence Parr. Enforcing Strict Model-View Sepa-
ration in Template Engines. http://www. string-
template .org,. May 2004. Accessed May 2009.

[17] Terence Parr. [DRAFT] A Functional Language
For Generating Structured Text.
http://www.stringtemplate.org. May 2006. Ac-
cessed May 2009.

[18] Terence Parr. StringTemplate documentation.
http://www.stringtemplate.org. Access May 2009.

[19] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proceedings of the 4th International Modelica
Conference, Hamburg, , March 7-8, 2005.

[20] Adrian Pop, Peter Fritzson, Andreas Remar, El-
mir Jagudin, and David Akhvlediani. OpenMode-
lica Development Environment with Eclipse Inte-
gration for Browsing, Modeling, and Debugging.
In Proc 5th International Modelica Conf. (Mode-
lica'2006), Vienna, Austria, Sept. 4-5, 2006.

[21] Adrian Pop. Integrated Model-Driven Develop-
ment Environments for Equation-Based Object-
Oriented Languages. www.ep.liu.se. PhD Thesis
No. 1183, June 5, 2008.

[22] Martin Sjölund. Bidirectional External Function
Interface Between Modelica/MetaModelica and
Java. Master Thesis. Linköping Univ, Aug. 2009.

[23] Philip Wadler. A Prettier Printer. Journal of
Functional Programming,1998, pp 223-244.
Draft version
:homepages.inf.ed.ac.uk/wadler/papers /pret-
tier/prettier.pdf Implementation PPrint by Daan
Leijen

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 207

