We have tested our computer aided learning tools in educational practice of our faculty. It seems, those physiologists can look at this chip as like a black box with some physiological functions and programmers features of the simulation model user interface, it enables a better perception of the complicated dynamic model design can, in our experience, facilitate the interdisciplinary understanding and cooperation. Physiologic subsystem or on a single physiologic relation and examine the behavior of each of the physiological (even unfinished) immediately in teaching practice. This brings new ideas for the subsequent system.

The authoring of multimedia educational programs is many clever intercommunicating tools and keeping a challenging and complicated project, requiring team industry standards can further promote the authors' getting closer to an industrial procedure. Working with

The connection of multimedia features with the simulation models forms the basis of our multimedia simulation guides to clinical physiology, covering the fields of acid-base and electrolyte balance, the physiology of muscles and the physiology of respiration at the moment. Simulation guides to the physiology of circulation and physiology of diabetes are currently in progress. When utilizing simulation models in educational software, one has to design the model based on a mathematical description of physical reality. As in a flight simulator with a more or less realistic model of a plane, there is a model of the human body (or some of its physiological subsystems) behind a medical simulator.

Another prospective environment for hosting multimedia simulators is the Microsoft .NET platform. Simulation models can communicate with the objects of the user interface created with Microsoft Visual Studio .NET. We have also developed a tool to automate the conversion of a Simulink model to the .NET environment. A Control Web simulator can be placed in the .NET environment too and it can easily communicate with other .NET components.